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Mathematical models in the form of graphs are widely used for modeling various phenomena, processes 

and systems. As a result, many theoretical and applied problems may be solved by means of various procedures 
of graph model analysis. It is possible to select a set of typical algorithms of graph processing among all those 
procedures. The problems of graph theory, modeling algorithms, analyzing and solving problems based on 
graphs are discussed in a number of publications. One of the editions that can be recommended for deeper 
understanding of the graph theory is the book by Cormen, et al. (2001).  

Let G be a graph 
),( RVG = , 

for which the set V of vertices  , , is defined , and the list of arcs  iv ni ≤≤1

),(
jj tsj vvr = , , mj ≤≤1

is defined by the set R. Generally, the arcs may be assigned certain numerical characteristics (weights)) , 
 (the weighted graph). An example of the weighted graph is given in Figure 11.1. 

jw
mj ≤≤1
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Figure 11.1.  Example of the weighted oriented graph 

There are various ways to represent a graph on a computer. If the number of arcs in the graph is small (i.e. 
) it is useful to apply the list enumerating the arcs of the graph. Representing the dense graphs, almost 

all the nodes of which are linked by arcs (i.e. ), may be efficiently achieved by means of the adjacency 
matrix 

2nm <<
2~ nm

 , , )( ijaA = i≤1 nj ≤ , 

the nonzero values of which correspond to the arcs of the graph 
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(the infinity sign is used in a corresponding position to denote the absence of an arc between the vertices in the 
adjacency matrix. In computations the infinity sign may be replaced by, for instance, a negative number). For 
instance, the adjacency matrix, which corresponds to the graph in Figure 11.1, is shown in Figure11.2   
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Figure 11.2. The adjacency matrix for the graph in Figure 11.1 

It should be noted that the use of the adjacency matrix makes possible to apply the matrix algorithms of data 
processing in the implementation of the computational procedures of graph analysis. 

We will discuss further some approaches to parallel algorithm implementation on graphs using the problem 
of searching the shortest paths among all the pairs of vertices and the problem of finding the minimum spanning 
tree. Besides, we will consider the problem of optimal graph partition, which is widely used in parallel 
computations. To represent graphs in the course of consideration of the above mentioned problems we will use 
the adjacency matrix.  

This Section has been written  based essentially on the teaching materials given in Schloegel, et al. (2000) 
and Quinn (2004). 
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11.1. The Problem of the Search for All the Shortest Paths  

The initial information for the problem is the weighted graph ),( RVG = , which contains n vertices 
( ). Each arc of the graph is assigned the non-negative weight. The graph is assumed to be oriented, i.e. if 
there is an arc from the vertex i to the vertex j, it should not be supposed that there is an arc from j to i. In case 
when the vertices are connected by inverse arcs, the weights assigned to the arcs may not coincide. Let us 
consider the problem, in which we have to find the minimum paths among each pair of the graph vertices for the 
given graph G. As a practical example we may use the problem of working out the transport route between 
various cities, if the distances between them are given, and all the problems alike.  

nV =||

As a method for solving the problem of searching all the shortest paths, we will further use the Floyd 
algorithm (see, for instance, Cormen, et al. (2001)). 

11.1.1. The Sequential Floyd Algorithm 

The complexity of the algorithm proposed by Floyd for searching the minimum paths between all the pairs 
of vertices is the order . Generally, the algorithm may be given in the following way: 3n

// Algorithm 11.1 
// The Sequential Floyd Algorithm  
for (k = 0; k < n; k++) 
  for (i = 0; i < n; i++) 
    for (j = 0; j < n; j++) 
      A[i,j] = min(A[i,j],A[i,k]+A[k,j]); 

Algorithm 11.1. The general scheme of the Floyd algorithm  

(the implementation of the minimum value operation min  must be performed with taking into account the 
method of describing nonexistent graph arcs in the adjacency matrix). As it can be noted, while the algorithm is 
executed, the adjacency matrix A changes. After the termination of computations, the required result (the length 
of all the minimum paths) will be stored in matrix A.   

Additional information and the proof of the Floyd algorithm correctness may be obtained in Cormen, et al. 
(2001). 

11.1.2. Computation Decomposition 

As a general scheme of Floyd algorithm suggests, the main computational load in solving the problem of 
searching the shortest paths is choosing the minimum values (see Algorithm 11.1). It is not worthwhile to 
parallelize this rather simple operation, as it will not speed up the computation significantly. It is more efficient 
to update the values of matrix A simultaneously, as it will make parallel computations more effective.  

Let us illustrate the correctness of this method of parallelism implementation. For this we have to prove that 
the operation of updating the values of the matrix A during one iteration of the outer cycle k may be performed 
independently. In other words, we must prove that the elements Ai k  and Ak j  do not change at iteration k for any 
pair of indices ( i , j ) . Let us analyze the expression, according to which the change of the elements of the matrix 
A happens:  

Ai j  ← min (A i j , A i k  + Ak j ). 
For  i=k  we will have 

Ak j  ← min (Ak j , Ak k  + Ak j ), 
but then value Ak j  will not change as Ak k=0. 

For j=k  the expression is transformed and reduced to  
Ai k  ← min (A i k , A i k  + Ak k ), 

which also shows that values Ai k  are unchangeable. As a result, the necessary conditions for parallel 
computations take place. Thus, the operation of updating the elements of the matrix A may be used as the basic 
computational subtask (to identify subtasks we will use the indices of the elements, which are updated in them).  

11.1.3.  Analysis of Information Dependencies 

Computations in the subtasks become possible only if each subtask (i , j) contains elements Ai j , Ai k , Ak j  of 
the matrix A, which are necessary for computations. To eliminate data duplicating we will place the only element 
A i j  in the subtask (i , j). Obtaining all the other necessary values may be provided only by means of data 
transmission. Thus, each element Ak j  of the row k of the matrix A must be transmitted to all the subtasks (k, j), 
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1≤  j≤  n , and each element Ai k  of the column k of the matrix A must be transmitted to all the subtasks (i ,k), 
1≤  i≤  n ,   - see Figure11.3. 

 k

k 

 

Figure 11.3. The information dependencies of the basic subtasks (the arrows show the direction of 
exchanging values at iteration k) 

11.1.4.  Scaling and Distributing Subtasks among Processors  

As a rule, the number of available processors p is considerably smaller than the number of basic subtasks 
 ( ). The use of the block-striped scheme decomposition of the matrix A is a possible way to aggregate 

the computations. This approach corresponds to uniting in one basic subtask the computations related with 
updating the elements of one or several rows (rowwise or horizontal partitioning) or columns (columnwise or 
vertical partitioning) of the matrix A. These two decomposition schemes are practically equal. With regard to the 
fact that for the algorithmic language C arrays are located rowwise, we will further apply only partitioning the 
matrix A into horizontal stripes.  

2n 2np <<

It should be noted that in case of this method of data decomposition, it is necessary to transmit among the 
subtasks only the elements of one of rows of the matrix A. The network topology for efficient execution of this 
communications is a hypercube or a complete graph.  

11.1.5. Efficiency Analysis 

Let us analyze the efficiency of the Floyd parallel algorithm. As previously, it will be done in two stages. 
During the first stage we will estimate the order of the algorithm computational complexity. At the second stage 
we will specify the estimations and take into account the time complexity of data communications.  

The total time complexity of the sequential algorithm, as it has been previously mentioned, is equal to  n3. 
For the parallel algorithm each processor performs updating of the elements of the matrix A at each iteration. 
There are  n2/p such elements in each subtask. The number of the algorithm iterations is equal to n. Thus, the 
speedup and efficiency characteristics of the Floyd algorithm look as follows: 

p
pn

nS p ==
)( 3

3
  and  ( ) 13

3
=

⋅
=

pnp
nE p .      (11.1) 

Thus, the general efficiency analysis gives ideal characteristics of parallel computation efficiency. To 
specify the obtained relations we will introduce the execution time of the basic operation of choosing the 
minimum value into the obtained expressions. We will also take into account the overhead of data 
communications among the processors. 

The communication operation performed at each iteration of the Floyd algorithm consists in transmitting a 
row of the matrix A to all the processors. As it has been shown previously, the execution of this operation may 
be done in  steps. With regard to the number of the Floyd algorithm iterations in case when the 
Hockney model is used, the total duration of data communications may be defined by means of the following 
expression  

⎡ p2log ⎤

⎡ ⎤ )/(log)( 2 βα nwpncommTp += ,        (11.2) 

where, as previously, α is the latency of the transmission network, β is its bandwidth, and  w is the matrix 
element size in bytes. 

With regard to the obtained relations, the total execution time for the Floyd parallel algorithm may be 
defined in the following way: 
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⎡ ⎤ ⎡ ⎤ )()(log2
2 βατ nwpnpnnTp ⋅+⋅+⋅⋅= ,      (11.3) 

where τ is the execution time of choosing the minimum value. 

11.1.6.  Software Implementation 

Let us present a variant of the Floyd algorithm parallel implementation. Program code is given for all main 
modules of the software. The absence of several parts of the parallel program does not hinder the general 
understanding of parallel computation scheme.  

1. The main function. The main function implements the computational method scheme by sequential 
calling out the necessary subprograms. 

// Program 11.1 
int ProcRank;    // rank of current process 
int ProcNum;     // number of processes 
 
// Maximum evaluation function 
int Min(int A, int B) { 
  int Result = (A < B) ? A : B; 
 
  if((A < 0) && (B >= 0)) Result = B; 
  if((B < 0) && (A >= 0)) Result = A; 
  if((A < 0) && (B < 0))  Result = -1; 
 
  return Result; 
} 
 
// Main function 
int main(int argc, char* argv[]) { 
  int *pMatrix;      // adjacency matrix 
  int  Size;         // size of adjacency matrix 
  int *pProcRows;    // rows of adjacency matrix 
  int  RowNum;       // number of rows on current process 
 
  MPI_Init(&argc, &argv); 
  MPI_Comm_size(MPI_COMM_WORLD, &ProcNum); 
  MPI_Comm_rank(MPI_COMM_WORLD, &ProcRank); 
 
  // Data initialization 
  ProcessInitialization(pMatrix, pProcRows, Size, RowNum); 
 
  // Data distribituon to all processes 
  DataDistribution(pMatrix, pProcRows, Size, RowNum); 
 
  // The Floyd parallel algorithm 
  ParallelFloyd(pProcRows, Size, RowNum); 
 
  // Result collection 
  ResultCollection(pMatrix, pProcRows, Size, RowNum); 
 
  // Computation Termination 
  ProcessTermination(pMatrix, pProcRows); 
 
  MPI_Finalize(); 
  return 0; 
} 

The function Min evaluates the minimum of two integers taking into account the applied method of 
marking the nonexistent arcs in the adjacency matrix (for instance, in the given implementation we use the value 
-1). 

The function ProcessInitialization defines the initial data of the problem being solved (the number of graph 
vertices), allocates memory for data storage, inputs the adjacency matrix (or forms it by means of any random 
number generator).   
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The function DataDistribution distributes the data among the processors. Each process receives the 
horizontal stripe of the adjacency matrix. 

The function ResultCollection accumulates the horizontal stripes of the result matrix with the shortest paths 
between any pairs of graph vertices from all the processes. 

The function ProcessTermination performs the necessary output of the computation results and releases the 
previously allocated memory. 

The implementation of all the above mentioned functions may be performed on the analogy with the 
examples, which have been discussed earlier and is given to the reader a training exercise. 

2. The function ParallelFloyd. This function performs the iterative change of adjacency matrix according 
to the Floyd algorithm.  

// The Floyd parallel algorithm  
void ParallelFloyd(int *pProcRows, int Size, int RowNum) { 
  int *pRow = new int[Size]; 
  int t1, t2; 
  for(int k = 0; k < Size; k++) { 
    // k-ой row distributin among processes  
    RowDistribution(pProcRows, Size, RowNum, k, pRow); 
 
    // Updating the adjacency matrix 
    for(int i = 0; i < RowNum; i++)  
      for(int j = 0; j < Size; j++) 
        if( (pProcRows[i * Size + k] != -1) && 
            (pRow     [j]            != -1)) { 
          t1 = pProcRows[i * Size + j]; 
          t2 = pProcRows[i * Size + k] + pRow[j]; 
          pProcRows[i * Size + j] = Min(t1, t2); 
        } 
  } 
     
  delete []pRow; 
}  

3. The function RowDistribution. This function distributes k-th row of the adjacency matrix among 
processes: 
// The row distribution function 
void RowDistribution(int *pProcRows, int Size, int RowNum, int k, 
  int *pRow) { 
  int ProcRowRank;   
  int ProcRowNum;    
 
  int RestRows = Size; 
  int Ind = 0; 
  int Num = Size / ProcNum; 
   
  for(ProcRowRank = 1; ProcRowRank < ProcNum + 1; ProcRowRank ++) { 
    if(k < Ind + Num ) break; 
    RestRows -= Num; 
    Ind      += Num; 
    Num       = RestRows / (ProcNum - ProcRowRank); 
  } 
  ProcRowRank = ProcRowRank - 1; 
  ProcRowNum  = k - Ind; 
 
  if(ProcRowRank == ProcRank) 
     copy(&pProcRows[ProcRowNum * Size], &pProcRows[(ProcRowNum + 1) * 
      Size], pRow); 
 
   MPI_Bcast(pRow, Size, MPI_INT, ProcRowRank, MPI_COMM_WORLD); 
}  



11.1.7. Computational Experiment Results 

The computational experiments for estimating the efficiency of the Floyd parallel algorithm for searching all 
the shortest paths were carried out under the conditions described in 7.6.5. They are described below.  

The computational cluster on the basis of processor Intel XEON 4 EM64T 3000 Mhz and Gigabit Ethernet 
under OS Microsoft Windows Server 2003 Standard x64 Edition  was used in the experiments.  

To estimate the duration τ  of the basic scalar operation of choosing the minimum value, we solved the 
problem of searching the shortest paths by means of the sequential algorithm. The calculation time obtained this 
way was divided by the total number of the executed operations. As a result of those experiments, the value 7.1 
nsec was obtained for τ  . The experiments carried out in order to determine the parameters of the data 
communication network gave the latency value α and the bandwidth value β correspondingly 47 msec and 53,29 
Mbyte/sec. All the computations were performed with the numerical values of the type int, i.e. value w is equal 
to 4 bytes. 

The results of the computational experiments are given in Table 11.1. The experiments were carried out on  
2, 4 and 8 processors. The time is given in seconds.  

Table 11.1. The results of the computational experiments for the parallel Floyd algorithm  

Parallel algorithm 
2 processors  4 processors 8 processors 

Number 
of 

vertices 

Sequential 
algorithm  

Time Speedup Time Speedup Time Speedup 
1000 8,0370 4,1519 1,9357 2,0671 3,8880 0,9407 8,5439 
2000 59,8119 30,3234 1,9725 15,3752 3,8901 8,0577 7,4229 
3000 197,1114 99,2642 1,9857 50,2323 3,9240 25,6433 7,6867 
4000 461,7849 232,5071 1,9861 117,2204 3,9395 69,9457 6,6021 
5000 884,6221 443,7467 1,9935 224,4413 3,9414 128,0784 6,9069 
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Figure 11.4. Speedup of the parallel Floyd algorithm  

The comparison of the experiment execution time  and the theoretical estimation  from (11.3) is 
given in Table 11.2 and in Figure 11.5. 

*
pT pT

Table 11.2. The comparison of the experimental time and the theoretical time of the Floyd algorithm 
execution 

Parallel algorithm 
2 processors  4 processors  8 processors  Number of 

vertices 
2T (model) *

2T  4T 8T(model) *
4T  (model) *

8T  

1000 3,7757 4,1519 2,1960 2,0671 1,5090 0,9407 
2000 29,1234 30,3234 15,4046 15,3752 8,8261 8,0577 
3000 97,4645 99,2642 50,3361 50,2323 27,3066 25,6433 
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4000 230,2200 232,5071 117,7013 117,2204 62,3058 69,9457 
5000 448,8112 443,7467 228,2108 224,4413 119,1790 128,0784 
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Figure 11.5. Experimental and theoretical execution time of the parallel Floyd algorithm for 2 
processors 

11.2. The Problem of Finding the Minimum Spanning Tree 

The spanning tree (or the skeleton) of the non-oriented graph G is the subgraph T of the graph G, which is a 
tree and contains all the vertices of graph G. The subgraph weight for the weighted graph is equal to the sum of 
all the weights of the subgraph arcs. Thus, the minimum spanning tree (MST) T may be defined as the spanning 
tree of the minimum weight. An applied interpretation of the problem of finding MST may consist in, for 
instance, practical example of creating a local network of personal computers and connecting them by 
communication lines of minimum length. An example of the weighted non-oriented graph and the minimum 
spanning tree, which corresponds to it, is given in Figure 11.6. 
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Figure 11.6. The examples of (а) the weighted non-oriented graph and (b) its minimum spanning 
tree 

We will further describe the algorithm for solving this problem, which is known as the Prim method. More 
detailed information on the problem may be found in  Cormen, et al. (2001). 

11.2.1.  The Sequential Prim Algorithm  

The algorithm starts from an arbitrary graph vertex, which is selected as the tree root. In the course of 
sequentially executed iterations the algorithm expands the tree, which it constructs, up to MST. Let  be the TV
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set of the vertices, which are already included into MST by the algorithm. Let the values , , be the 

minimum arc weights for arcs from the vertices, which are not included into MST yet, to the set , i.e. 
id ni ≤≤1

TV

{ }RuiVuuiwdVi TiT ∈∈=⇒∉∀ ),(,:),(min  

(if for some vertex  there is no arcs in , value  may be set the infinity value ∞ ). At the beginning 
of the algorithm execution the root vertex MST with number s is selected and it is assumed that 

TVi∉ TV id
}{sVT = , 

. 0=sd

The calculations, carried out at each Prim algorithm iteration, consist in the following: 
• Determining the values  for all the vertices not included into MST; id

• Finding the vertex t  of graph G , which has the arc of the minimal weight to the set : TV
       , )min(: it ddt = TVi∉ ; 

• Including the vertex t  into . TV

After executing (n-1)  iterations of the method, MST will be formed. The tree weight may be obtained by 
means of the expression:  

∑
=

=
n

i
iT dW

1

. 

The time complexity of defining MST is evaluated by the square dependence with respect to the number of 
graph vertices, i.e. is the order . )( 2nO

11.2.2.  Computation Decomposition 

Let us estimate the possibilities to execute the algorithm of finding the minimum spanning tree in parallel. 
The method iterations should be carried out sequentially. Thus, they cannot be parallelized. On the other 

hand, the operations, performed at each iteration, are independent and may be executed simultaneously. For 
instance, defining the values  may be done for each graph vertex simultaneously, finding the minimum 
weight arc may be implemented according to the cascade scheme, etc.  

id

Data distribution among the processors should provide the information independence of the above 
mentioned Prim algorithm operations. In particular, it may be provided if each graph vertex is located on the 
processor along with all the information related with the vertex. If follow this principle each processor , 

, should hold:  
jP

pj ≤≤1

• A set of vertices 
{ }kiiij jjj

vvvV +++= ,...,, 21 , ⎡ ⎤pnkjki j /),1( =−⋅= ,  

• The corresponding block of k values 
{ }kiiij jjj

ddd +++=∆ ,...,, 21 , 

• The vertical stripe of k neighboring columns of the adjacency matrix of the graph G  
{ }kiiij jjj

A +++= ααα ,...,, 21   (α s  is  s- th  column of matrix A), 

• The common part of the set   and the set of vertices , which is being formed in the course of the 
method execution. 

jV TV

As a result, we may conclude that the procedure of computing the block ∆ j  of values for the vertices Vj  of 
the the adjacency matrix A may be the basic computational subtask of the Prim parallel algorithm . 

11.2.3.  Analysis of Information Dependencies 

With regards to the choice of the basic subtasks, the general Prim algorithm execution scheme will consist 
in the following: 

• Finding the vertex t  of the graph G , which has the minimum weight arc to the set ; it is necessary to 
carry out the search of minimum in the sets of  available on each of the processors in order to choose this 
vertex, then the obtained values should be accumulated on one of the processors; 

TV

id
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• Broadcasting the number of the selected vertex to all the processors for including it into the spanning 
tree; 

• Updating the set of  values with regard to the new vertex, which has been added. id
Thus, two types of information communications are executed in the course of parallel computations among 

the processors. They are accumulating the data from all the processors on one of the processors and broadcasting 
messages from the processor to all the processors.  

11.2.4.  Scaling and Distributing Subtasks among Processors  

According to the definition the number of the basic subtasks always corresponds to the number of the 
available processors. Thus, the problem of scaling for parallel algorithm does not arise. 

Distributing subtasks among the processors must be done with regards to the communication operations 
performed in the Prim algorithm. For efficient implementation of the required information communications 
among the basic subtasks the network topology must be a hypercube or a complete graph.  

11.2.5.  Efficiency Analysis  

The general analysis of the Prim parallel algorithm for finding the minimum spanning tree produces ideal 
characteristics of parallel computation efficiency:  

p
pn

nS p ==
)( 2

2

  and  1
)( 2

2
=

⋅
=

pnp
nEp .     (11.4) 

It should be noted that the ideal computational load balancing may be violated. In the course of parallel 
computations the number of the selected vertices of the spanning tree on different processors may appear to be 
different depending on the type of the initial graph G. Thus, the distribution of computations among the 
processors turns to be unequal (some processors may have no computational load at all in this case). However, 
such extreme situations will appear rarely enough. Dynamic redistributing the computational load among the 
processors in the course of computations is a challenging but a very complicated job.  

In order to specify the obtained characteristics of parallel computation efficiency, we will estimate more 
precisely the number of the algorithm computational operations and take into account the expenses on data 
communications among the processors.  

At each iteration of the Prim parallel algorithm each processor finds the number of the nearest vertex from 
 to the spanning tree and performs recalculations of the distances  after the expansion of MST. The number 

of operations executed during each of these computational procedures is bounded from above by a number of 
vertices available on the processors, i.e. the value

jV id

⎡ ⎤pn . As a result, with regard to the total number of iterations 
n, the computation execution time for the Prim parallel algorithm may be estimated by the following relation: 

( ) ⎡ ⎤ τ⋅= pnncalcTp /2          (11.5) 

(here, as previously, , τ  is the execution time of an elementary computational operation). 
All gather communication operation to accumulate data from all the processors may be executed in 

 iterations. As a result the general estimation of the data communication duration can be evaluated by 
the expression (this communication operation is described in more detail in Sections 3 and 7): 
⎡ p2log ⎤

)

⎤

( ) ( βα /)1(3log2
1 −+= pwpncommTp ,       (11.6) 

where α is the network latency, , β is the network bandwidth, and  w is the size of a transmitted data element in 
bytes (the coefficient 3 in the expression corresponds to the number of the values transmitted among the 
processors, namely, the weight of the minimum arc and the numbers of the 2 vertices connected by the arc). 

The communication operation of transmitting the data from a processor to all the processors may also be 
executed in  iterations, and the general time estimation is done in the following way: ⎡ p2log

( ) ( )βα /log 2
2 wpncommTp += .       (11.7) 

With regard to the obtained relations the total execution time for the Prim parallel algorithm is the 
following:  

⎡ ⎤ ( ) ( )( )βαβατ /log/13log/2 22 wppwpnpnnTp ++−+⋅+⋅=     (11.8) 
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11.2.6.  Computational Experiment Results 

The computational experiments for estimation the efficiency of the Prim parallel algorithm were carried out 
under the same conditions as the experiments described in the previous Sections (see 11.1.7). 

To estimate the duration τ  of the basic computational operation we solved the problem of searching for the 
minimum spanning tree by means of the sequential algorithm. The computation time obtained in such a way was 
divided into the total number of the executed operations. As a result of the experiments, the value 4,8 nsec was 
obtained for τ. All computations were performed with the numerical values of the type int, i.e. the value w is 
equal to 4 bytes. 

The results of the computational experiments are given in Table 11.3. The experiments were carried out with 
the use of 2, 4 and 8 processors. The time is given in seconds. 

Table 11.3. The results of the computational experiments for the parallel Prim algorithm 

Parallel algorithm Sequential 
algorithm 2 processors 4 processors 8 processors Number of 

vertices  
Time Time Speedup Time Speedup Time Speedup 

1000 0,0435 0,2476 0,1757 0,9320 0,0467 1,5735 0,0277 
2000 0,2079 0,6837 0,3041 1,7999 0,1155 2,1591 0,0963 
3000 0,4849 1,4034 0,3455 2,2136 0,2191 3,1953 0,1518 
4000 0,8729 1,9455 0,6220 3,3237 0,2626 5,4309 0,1607 
5000 1,4324 2,6647 0,7363 2,9331 0,4884 4,1189 0,3478 
6000 2,1889 2,8999 0,8214 4,2911 0,5101 7,7373 0,2829 
7000 3,0424 3,2364 1,0491 6,3273 0,4808 8,8255 0,3447 
8000 4,1497 4,4621 1,2822 6,9931 0,5934 10,3898 0,3994 
9000 5,6218 5,8340 1,2599 7,4747 0,7521 10,7636 0,5223 

10000 7,5116 6,9902 1,2875 8,5968 0,8738 14,0951 0,5329 
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Figure 11.7. Speedup of the parallel Prim algorithm 

The comparison of experimental execution time  and the theoretical estimation  from (11.3) is given 
in Table 11.4 and in Figure 11.8. 

*
pT pT

Table 11.4. The comparison of the experimental time and the theoretical time for the parallel Prim 
algorithm 

Parallel algorithm 
2 processors 4 processors 8 processors Number of 

vertices  
2T 4T 8T(model) *

2T  (model) *
4T  (model) *

8T  

1000 0,4054 0,2476 0,8040 0,9320 1,2048 1,5735 
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2000 0,8203 0,6837 1,6128 1,7999 2,4120 2,1591 
3000 1,2447 1,4034 2,4264 2,2136 3,6216 3,1953 
4000 1,6786 1,9455 3,2447 3,3237 4,8335 5,4309 
5000 2,1220 2,6647 4,0678 2,9331 6,0479 4,1189 
6000 2,5750 2,8999 4,8957 4,2911 7,2646 7,7373 
7000 3,0375 3,2364 5,7283 6,3273 8,4837 8,8255 
8000 3,5095 4,4621 6,5656 6,9931 9,7052 10,3898 
9000 3,9911 5,8340 7,4078 7,4747 10,9290 10,7636 

10000 4,4821 6,9902 8,2546 8,5968 12,1552 14,0951 
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Figure 11.8. Experimental and theoretical execution time of the parallel Prim algorithm for 2 

processors 
As it can be noted from Table. 11.4 and Figure11.8, the theoretical estimations evaluate the execution time 

of the Prim parallel algorithm with the error, which may be considerable. This divergence is caused by the fact 
that the Hockney model is less precise in estimating the message communication time, if the amount of the 
transmitted data is small. In this respect it is necessary to use other more precise model for estimating the time 
complexity of the communication operations in order to specify the obtained estimations. This problem has been 
discussed in Section 3.  

11.3. The Problem of the Optimum Graph Partition  

This problem is one of those, which frequently occur in the various areas, which involve parallel 
computations. As an example we may use the problem of processing the data when the domains of calculations 
are presented as two- or three-dimensional grids. As a rule the computations in such problems are reduced to the 
execution of data processing procedures for each element (a grid node). In the course of computations the results 
of data processing may be transmitted among the neighboring grid elements, etc. It is evident that for the 
efficient solution of such problems on multiprocessor systems with distributed memory, the grid should be 
distributed among the processors so that each of the processors holds approximately the same number of the grid 
elements, and the interprocessor communications necessary for the information exchange among the neighboring 
elements are minimal. Figure 11.19 shows the example of an irregular grid divided into 4 parts (the different 
parts of the grid partitioning are marked by the dark colors of various intensities).  
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Figure 11.9. The example of irregular grid partitioning  

It is obvious that such problem of distributing grid among the processors may be reduced to the problem of 
optimum graph partitioning. This approach is efficient because representing calculation models as graphs 
facilitates the problems of storing the processed data and gives the opportunity to apply the well known graph 
algorithms.  

If a grid should be represented as a graph, each grid element may be associated with a graph vertex. The 
graph arcs should be used for reflecting the grid element closeness (for instance, the arcs between the vertices of 
the graph may be defined only if the corresponding elements of the initial grid are neighbors). In case of this 
approach the grid shown in Figure 11.9 will correspond to the graph shown in Figure 11.10 
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4

87

6
 

Figure 11.10.  The example of the graph, which represents the structure of the grid shown in Figure 
11.9 

Additional information on the problem of the graph partitioning may be found, for instance, in Schlegel, et 
al. (2000). 

The problem of the optimum graph partitioning may itself become the subject of the parallelization. It 
becomes necessary when the computational power and RAM size of average computers appear to be insufficient 
for solving such problems efficiently. Parallel algorithms of graph partitioning are the subject of considerations 
in many publications: Barnard (1995), Gilbert et al. (1987), Heath et al. (1995), Karypis et al. (1998, 1999), 
Raghavan (1995), Walshaw et al. (1999). 

11.3.1.  Problem Statement 

Let there be given the weighted non-oriented graph G=(V,E) , each vertex of which  and each arc 
of which  are assigned a weight. The problem of optimum graph partition consists in partitioning its 
vertices into nonintersecting subsets with maximum close summary vertex weights and the minimum summary 
weight of the arcs, passing through the obtained vertex subsets.  

Vv∈
Ee∈

It should be noted that the given criteria of graph partitioning may be contradictory. The equilibrium of the 
vertex subsets may not correspond to the minimality of the neighboring arc weights and vice versa. In most cases 
a compromise solution is necessary. Thus, if the fraction of communication is small, it appears to be efficient to 
optimize the arc weights in the solutions, which provide the optimum partitioning of vertices according to their 
weights.  

For the sake of simplicity the vertex weights and the arc weights will further be assumed to be equal to one. 
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11.3.2. Recursive Bisection Method 

The recursive bisection method may be recursively used for solving the problem of graph partitioning. This 
method implies dividing the graph into two equal parts at the first iteration. Further during the second step each 
of the parts is also divided into halves and so on. This method requires  recursion levels for dividing the 
graph into k parts; also it requires 

k2log
k-1  operations of dividing in half. In case when the number of required parts k 

is not a power of two, each division should be done in the corresponding relation.  
The example of the graph division into five parts in Figure 11.11 illustrates the scheme of the method 

application. First, the graph should be divided into two parts as 2:3 (continuous line), then the right part should 
be divided as 1:3 (dashed line), after that we have to divide two outermost subareas to the left and to the right as 
1:1 (dashed pointed line). 
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Figure 11.11.  The example of graph division into five parts by the recursive bisection method 

11.3.3.  The Geometric Methods  

The geometric methods (see, for instance, Berger, et al. (1987), Gilbert, et al. (1995), Heath, et al. (1995), 
Miller, et al. (1993), Nour-Omid, et al. (1986), Patra, et al. (1998), Pilkington, et al. (1994), Raghavan (1993)) 
are used for grid dissection. They are based exclusively on the coordinate information about the grid nodes. As 
these methods do not take into account the information concerning the grid element connectivity, they cannot 
explicitly cause the minimization of the summary weight of boundary arcs (in terms of the graph, which 
corresponds to the grid). To minimize the interprocessor communications the geometric methods should 
optimize some auxiliary criteria (for instance, the length of the border between the partitioned parts of the grid). 

The geometric methods do not usually require a big amount of computations. However, the quality of their 
partitioning is usually not so high as that of the methods, which take into account the connectivity of the grid 
elements. 

11.3.3.1.  Coordinate Nested Dissection 

The coordinate nested dissection algorithm is the method, which is based on the recursive division of the 
grid into half according to the longest side. Figure 11.12 illustrates the method. The method of coordinate nested 
dissection used for partitioning the grid shown in the Figure gives a considerable smaller length of the border 
between the separated parts in comparison with the case when the grid is partitioned according to shortest 
(vertical) side.  

 

Figure 11.12.  The example of grid partition by the coordinate nested dissection method (the border 
line is shown by the bold line) 

 14



The general computational scheme of this method is described below. First the centers of mass of the grid 
elements are computed. The points obtained are projected on the axis, which corresponds to the longest side of 
the grid being partitioned. Thus, we obtain a well-ordered list of all grid elements. Dividing the list in half 
(possibly, in the necessary proportion) we obtain the required dissection. The obtained fragments are 
analogously divided into the required number of parts recursively.  

The coordinate nested dissection method operates very quickly and requires a small amount of memory. 
However, the quality of the obtained partition is lower than that of the more complex and more time consuming 
computational methods. Besides, if the grid structure is complicated enough the algorithm may produce partition 
with disconnected subgrids. 

11.3.3.2.  The Recursive Inertial Bisection Method 

The previous scheme could produce a partition of the grid only along the line, which is perpendicular to 
one of the coordinate axes. In many cases this limitation appears to be crucial for creating well-balanced 
partition. To make it evident, it is enough to turn the grid in Figure 11.12 at a sharp angle to the coordinate axes 
(see Figure 11.13). In order to minimize the borders between the subgrids, it is desirable to be able to draw the 
dissection line with any desired angle of rotation. A possible way to define the angle of deflection, which is used 
in the recursive inertial bisection method, is the use of the main inertial axis (see, for instance, Pothen, A. 
(1996)). The grid elements are regarded to be mass points. The bisection line, which is orthogonal to the 
obtained axis, produces, as a rule, the shortest border.  

 

 

Figure 11.13.  The example of grid partition by the recursive inertial bisection method (the main 
inertial axis is marked by the arrow)  

11.3.3.3.  Grid Dissection by Means of Space-Filling Curve Technique  

All the previously described geometric methods have a common drawback. The fact is that at each 
bisection these methods take into account only one dimension. Thus, the schemes, which take into account more 
dimensions, are able to provide better partition. 

One of such methods puts the elements in order according to the positions of their mass centers along the 
Peano curves. The Peano curves are such curves, which fully fill high dimensional figures (for instance, a square 
or a cube). The use of the Peano curves provides the closeness of the figure points if they correspond to points, 
which are close on the curve. After generating the list of all the grid elements sorted according to their position 
on the Peano curve, it is enough to divide the list into the necessary number of parts according to the established 
order. The method produced by this approach is referred to as the space-filling curve technique. More 
information about the method can be found in Ou, et al. (1996), Patra, et al. (1998), Pilkington, et al. (1994). 

 

 

Figure 11.14. The example of grid dissection into 3 parts by means of space-filling curve technique  
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11.3.4.  The Combinatorial Methods 

Unlike the geometric methods the combinatorial algorithms (see, for instance, George (1981), Schloegel, et 
al. (2000)) operate, as a rule, not with the grid but with the graph, constructed on basis of the grid. 
Correspondingly, these methods make no regard to the information of the closeness of the grid elements. The 
combinatorial methods are guided by the adjacency of graph vertices. They provide more balanced partition and 
lesser information relations of the obtained subgrids than the previously described methods. However, such 
methods tend to operate much longer than the geometric ones.  

11.3.4.1. Grid Dissection with Regards to Adjacency  

It is clear that in case of graph dissection the information dependencies between the separated subgraphs 
will be lesser, if the neighboring vertices (the vertices between which there are the graph arcs) will be in the 
same subgraph. The levelized nested dissection algorithm is aimed to implement this intention. The algorithm 
adds the neighboring vertices to the created subgraph subsequently. The graph is bisected at each algorithm 
iteration. Thus, partitioning the graph into the required number of parts is achieved by means of the recursive use 
of the algorithms.  

The general computational scheme of the algorithm may be described in the following way. 

1. Iteration = 0 
2. Assigning the number Iteration to the arbitraty graph vertex  
3. Assigning the number Iteration + 1 to the unnumbered neighbors of the 

vertices with the number  Iteration 
5. Iteration = Iteration + 1 
6. If there are any unnumbered neighbors, then proceed to step 3 
7. dividing the graph into two equal parts according to the enumeration   

Algorithm 11.2. The general scheme of the graph dissection algorithm with regard to adjacency  

To minimize the information dependencies it is reasonable to choose a bordering vertex as the initial one. 
The search of such vertex may be carried out by the method, which is close to the discussed scheme. Thus, 
having enumerated the graph vertices according to algorithm 11.2 (starting the enumeration with an arbitrary 
vertex), we may take any vertex with the maximum number. Obviously, it will be a bordering one.  

The example of the algorithm execution is given in Figure 11.15. The digits denote the numbers, which 
have been assigned to the graph vertices in the course of enumeration. The solid line shows the border, which 
parts the two subgraphs. The optimum solution is shown by the dashed line. It is obvious, that the partition 
obtained by means of the algorithm is far from being optimum, as the example contains the solution only with 
three splitted arcs instead of 5.  
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Figure 11.15.  The example of the graph dissection algorithm with regard to adjacency  

11.3.4.2.  The Kernighan-Lin Algorithm 

The Kernighan-Lin algorithm makes use of another approach in order to solve the problem of optimum 
graph partition. It is assumed from the very beginning, that some initial graph partition already exists. Then the 
approximation is improved in the course of a number of iterations. The method of improvement used in the 
Kernighan-Lin algorithm consists in the exchange of vertices among the subsets of the available graph partition 
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(see Figure 11.16). To form the required number of graph parts it is possible, as previously, to use the recursive 
bisection method.  

The iteration of the Kernighan-Lin algorithm may be described as follows: 

1. Forming a set of pairs of vertices for permutation 
The vertices, which have not yet been rearranged at the given iteration, 
are taken to create all the possible pairs (the pairs should contain 
vertices from each part of the given graph partition) 

2. Creating new variants of graph partition 
Each pair, prepared at step 1, is used by turns for exchangig vertices 
among the parts of the available graph partition. It is done for  
obtaining the set of new partition variants.  

3. Choosing the optimum variant of graph partition 
The optimum variant is chosen for the set of new variants of graph 
partition obtained at step 2. This variant is fixed as the new current 
graph graph partition. The pair of vertices, which corresponds to the 
selected variant, is marked as being used at the current algorithm 
iteration. 

4. Checking of graph vertex availability 
If there are any graph vertices, which have not been used in permutation, 
the algorithm iteration is repeated beginning from step 1. Otherwise step 
5 follows. 

5. The choice of the optimum graph partition 
The best generated variant of graph partition is chosen among all the 
graph partitions, obtained at step 3 of the carried out iterations. 

Algorithm 11.3. The iteration of the Kernighan-Lin algorithm  

It should be additionally explained that the permutation of each pair of vertices is carried out at step 2 of the 
algorithm iteration for the same graph partition, which was chosen before the beginning of iteration or was 
determined at step 3. The total number of carried out iterations can be considered as the algorithm parameter 
and, as a rule, is fixed beforehand. In should be noted that calculations may be terminated due to the lack of 
improvement in graph partition at some iteration).  

 

Figure 11.16.  The example of permutation of two vertices (marked by the grey color) 

11.3.5.  Efficiency Analysis 

The above considered algorithms of graph partition differ in accuracy of their solutions, the execution time 
and the possibilities of parallelizing (accuracy is the value of closeness of the solutions obtained by algorithms to 
the optimum variants of graph partition). The choice of the appropriate algorithm in each particular case is a 
complicated and unevident problem. The general characteristics of the algorithms discussed in this Section, 
which is given in Table 11.5, may be helpful in this respect (see Schloegel, et al. (2000)). Additional information 
on the problem of graph partition may be obtained, for instance, in Schloegel, et al. (2000). 

Table 11.5. The comparative table of some graph dissection algorithms  

 Necessity of coordinate Accuracy Execution Possibilities for 
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information time  parallelizing  
Coordinate nested dissection  yes ● ● ●●● 
Recursive inertial bisection yes ●● ● ●●● 
Levelized nested dissection no ●● ●● ●● 

1 iteration no ●● ●● ● 
10 iterations no ●●●  ●●● ●● Kernighan-Lin 

algorithm  
50 iterations no ●●●● ●●●  ●● 

The column “Necessity of coordinate information” shows whether and how the algorithm uses the 
coordinate information about the grid elements or graph vertices. 

The column “Accuracy” gives the quality characteristic of the closeness of the solutions obtained by the 
algorithm to the optimum variants of graph partition. Each additional shaded circle signifies approximately 10% 
improvement of the approximation accuracy (correspondingly, each half shaded circle signifies 5 % 
improvement of the obtained solution).  

The column “Execution time” shows the relative time needed for different partition algorithms. Each 
additional shaded circle corresponds to 10 times increase of the partition time (a half shaded circle 
correspondingly marks a 5 times increase).  

The column “Possibilities for Parallelizing” characterizes the algorithm features for parallelization. The 
Kernighan-Lin algorithm in case of carrying out only one iteration is practically not parallelizable. The same 
algorithm in case of multiple iterations and also the levelized nested dissection method may be parallelized with 
average efficiency. The coordinate nested dissection algorithm and the recursive inertial bisection method can be 
efficiently parallelized.  

11.4. Summary  

The Section discusses several algorithms for solving some well known problems of graph calculations. 
Besides, it presents a review of graph partition methods. 

In Subsection 11.1 the Floyd algorithm is considered for solving the problem of search for the shortest 
paths among all the pairs of graph vertices. To develop the parallel variant of the Floyd method a complete 
design cycle is carried out. The sequential computational scheme is described, the possible ways for algorithm 
parallelizing are discussed, the efficiency of the obtained parallel computations is evaluated, the software 
implementation is suggested and the results of the computational experiments are given. The approach, which is 
used for parallelizing the Floyd algorithm, consists in distributing the vertices of the graph among the processors. 
In this case the information communications at each method iteration consist in broadcasting an adjacency 
matrix row from a processor to all the processors. 

In Subsection 11.2 the Prim algorithm is described. The algorithm is used for solving the problem of 
finding the minimum spanning tree for a non-oriented weighted graph. The graph spanning tree is the subgraph, 
which holds all the vertices of the original graph and has the minimum summary weight. The parallel Prim 
algorithm is also based on distributing the graph vertices among the processors. The amount of information 
communications is somewhat bigger than in the case of the Floyd algorithm. At each iteration the gather 
communication operation is executed. Then the selected graph vertex is distributed to all the processors. 

In Subsection 11.3 the problem of optimum graph partition is discussed. This problem is essential in 
various areas, which involve parallel computations. As an example it is shown that the problem of distributing 
grid computations among the processors may be reduced to the problem of optimum graph partitioning.  

To solve the graph partition problem two different types of methods are considered. The geometric methods 
use only coordinate information for graph partitioning. Among these methods the coordinate nested dissection 
algorithm, the recursive inertial bisection method, the space-filling curve techniques are given. Other approach 
is exploited in the combinatorial algorithms, at which the adjacency of the graph vertices is taken into account. 
The methods of this type are the levelized nested dissection method and the Kernighan-Lin algorithm. The 
comparison of the two approaches is illustrated by analyzing such characteristics as execution time, accuracy of 
the obtained solution, possibility of parallelizing etc. 

11.5. References 

Additional information on the Floyd method and the Prim algorithm may be obtained, for instance, in 
Cormen, et al. (2001).  

More detailed information on the problem of graph partition may be found in Schloegel, et al. (2000), 
Berger, et al. (1987), Gilbert, et al. (1995), Heath, et al. (1995), Miller, et al. (1993), Nour-Omid, et al. (1986), 
Patra, et al. (1998), Pilkington, et al. (1994), Raghavan (1993), George (1981). 
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Parallel algorithms of graph partition are discussed in Barnard (1995), Gilbert, et al. (1987), Heath, et al. 
(1995), Karypis, et al. (1998, 1999), Raghavan (1995), Walshaw, et al. (1999). 

11.6. Discussions 

1. Give the definition of the graph. What are the main methods of graph representation on a computer? 
2. What does the problem of searching all the shortest paths consist in? 
3. Give the general scheme of the Floyd algorithm. What is the time complexity of the algorithm? 
4. What approach can be applied to parallelize the Floyd algorithm? 
5. What is the essence of the problem of searching the minimum spanning tree? Give an example 

illustrating how the problem can be used in practice. 
6. Give the general scheme of the Prim algorithm. What is the time complexity of the algorithm? 
7. What approach can be applied to parallelize the Prim algorithm? 
8. What is the difference between the geometric and the combinatorial methods of graph partition? Which 

of them are preferable and why? 
9. Describe the coordinate nested dissection method and the levelized nested dissection algorithm. Which 

of them is easier to implement? 

11.7. Exercises 

1. Develop the Floyd parallel algorithm using the given program code. Execute the computational 
experiments. Formulate the theoretical estimations. Compare the theoretical estimations with the experimental 
data. 

2. Develop software implementation for the Prim parallel algorithm. Execute the computational 
experiments. Formulate the theoretical estimations. Compare the theoretical estimations with the experimental 
data. 

3. Develop software implementation for the Kernighan-Lin algorithm. Estimate the possibilities of the 
algorithm parallelizing.  
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